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Origin of the designability of protein structures
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We examined what determines the designability of two-letter cddeand P) lattice proteins from three
points of view. First, whether the native structure is searched within all possible structures or within maximally
compact structures. Second, whether the structure of the used lattice is bipartite or not. Third, the effect of the
length of the chain, namely, the number of monomers on the chain. We found that the bipartiteness of the
lattice structure is not a main factor that determines the designability. Our results suggest that highly designable
structures will be found when the length of the chain is sufficiently long to make the hydrophobic core
consisting of a large enough number of monomgs4.063-651X99)18810-X

PACS numbds): 87.15.By, 87.10te, 02.70.Lq

INTRODUCTION Irback and Sandelin studied the HP models on the square
and triangular lattice5]. They adopted different energy pa-

Natural proteins fold into unique compact structures inrameters from Liet al. [4], namely, Eyy=—1 and Eyp
spite of the huge number of possible conformatiphls For ~=Epp=0. In the calculation of the designability they con-
most single domain proteins, each of these native structuresidered all the possible structures not restricting themselves
corresponds to the global minimum of the free endi2ly to the maximally compact ones. For the square lattice, they

It has been proposed phenomenologically that the numberonfirmed the existence of the highly designable structures
of possible structures of natural proteins is only about 100@s in Ref.[4]. For the triangular lattice, however, no such
[3], which suggests that many sequences can fold into ongtructures were found. In addition to the nearest-neighbor
preferred structure. There have been theoretical studies faopological contact interactions, they considered local inter-
the existence of such preferred structurés§]. actions represented by the bend angle and calculated the de-

In many theoretical studies for the protein folding, a sim-signability. Indeed the local interactions reduced degeneracy
plified model called the hydrophobic poldHP) model (i.e., the number of sequences which have nondegenerate
[4,5,7-13 is adopted. The HP model is one of two-letter ground state increasg@nd made the designability higher.
codes lattice models where a protein is represented by a seBut they found that the designability on the square lattice
avoiding chain of beads placed on a lattice with two types ofwvas still much higher than that on the triangular lattice. They
beads, hydrophobiH) and polar(P). In the HP model, the concluded that the difference in the designability for these
energy of a structure is given by the nearest-neighbor topdwo lattices are related to the even-odd problem, that is,
logical contact interactions as whether the lattice structure is bipartite or not.

Quite recently, Liet al. proposed a model based on the
HP model on the square latti¢8]. In the model, the hydro-
phobic interaction is treated in such a way that the energy
decreases if the hydrophobic residue is buried in the core.
wherei andj are monomer indexeég;} are monomer types They justify this treatment with two reasond) the hydro-
(c=Hor P); A(ri—r;)=1 if r; andr; are topological near- phobic forc_e that is domina_nt in _foIdin@LS,lZH originates
est neighbors not along the sequence, agd —r;) =0 oth- from aversion of hydrophobic residues from waté). The
erwise. Miyazawa-Jernigan matrikl5] contains a dominant hydro-

Based on the HP model, a conceptd#signabilityhas  phobic interaction of the linear fornk,z=h,+hg [16].
recently been introducedt]; the number of sequences that They took

H=-2 E,, A=), (1)

i<j

have a given structure as their nondegenerate ground state N
(native statg is called thedesignability of this structure. _

. H=-2 sh;, 2)
When many sequences have a common native structure, one =

can say that the structure higghly designableAdding to the
importance in the protein design problem, the designabilitywhere{h;} represent a sequencle, &€ 1 if the ith amino acid
also has evolutional significance because highly designablis H-type, andh;=0 if it is P-type), and{s;} represent a
structures are found to be relatively stable against mutationstructure =0 if the ith amino acid is on the surface and
In the original study of Liet al. [4], HP models on the s;=1 if it is in the corg. They calculated the designability
square and cubic lattices are employed, with the energy paver all maximally compact structures, whose result is con-
rameters in Eq.(1) being Eyy=—2.3, E4p=—1.0, and sistent with their former studj4] (see Table)l
Epp=0.0. For each sequence, they calculated the energy In our view, there are many points to be explored further
over all maximally compact structures and picked up thefor the designability problem. First, since the structures of
native structure. The results indicated that highly designableatural proteins are compact but not necessarily “maximally
structures actually exist on both lattices. compact” in general, how can we justify the discussion

1063-651X/99/6(1)/46965)/$15.00 PRE 60 4696 © 1999 The American Physical Society



PRE 60 ORIGIN OF THE DESIGNABILITY OF PROTEIN STRUCTURES 4697

TABLE I. The difference among three studies is shown. Each variable in the Hamiltonian is defined in the text.

Li et al.[4] Irback and Sandelif5] Li et al.[6]
Lattice square and cubic square and triangular square
Interaction nearest-neighbor depend on the position dfian
N

Hamiltonian H=—gj, E(,i(,jA(ri—rj) H:—; sh;
Energy parameter

-2.3,-1.0,0.0 ~1,0,0
(Enn Enp Epp) ( ) £1.0.9
Conformational space maximally compact all maximally compact
Highly designable found on both lattices found on square lattice but not found found
structures on triangular one

where only the maximally compact structures are taken into N
account? Second, is it adequate to consider only nearest- H=2 ESihi, (©)
neighbor interactions? Properties of a system with only =t
nearest-neighbor interactions are directly affected by the lat- . . .
tice structure, in particular, whether the lattice is bipartite orVN€rethi} represent a sequendg=1 if theith monomer is
not. Is it good, only from these facts, to conclude immedi-t€H-type, anch;=0 if itis P-type. The variables; denotes

ately that the absence of the highly designable structures dii€¢_number of contacts with the solvent, for exampe,
the triangular lattice should be ascribed to the even-odd™ 10:1:2,3 on the square lattice argl={0,1,2,3,4,5 on the
problem associated with the triangular latti§6]? One triangular !att|ce'. In other wordss;=0 means that théth
should discuss the problem on the triangular lattice by usingnonomer is buried away from the solvent. We tdkg=0,
a model like the one in Ref6] where the interactions do not E1=v2, E;=\7, Es=113, E4=1/19, andEs=23. That
depend on the contact between monomers, hedgenot IS, the possible minimum energy is zero. And these param-
directly reflect the nonbipartiteness eters are selected so that the larger the number of contacts
Our aim of this paper is to examine the above points andVith the solvent s, the more the degree of energy increase is;
clarify what determines the designability of protein struc-the hydrophobic residue is energetically unfavorable to be at
tures. For that purpose, we introduce a model called théhe corner[17,18. Although the choice of these values is
“solvation model” and calculate the designability ovall ~ Somewhat arbitrary, we have considered the following
possiblestructures on the square and the triangular lattices?0ints: (1) these values should not increase too rapidly with
Comparing the resu'ts W|th those Of the HP mode'l we invesIhe Increase In the ngmber Of contacts W|th the Sleent and
tigate which properties of designability are less sensitive to 42) the way of choosing these values must not bring about
choice of models and energy parameters. In the solvatioRonessential accidental degeneracihse to simple rational
model, a sequence consists of two-type amino agitland ~ ratios between the parametef&9]. _ _
P) and based on Re[ﬁ], the energy increases if the hydro_ US|ng the model on the Square and t”angular |att|CeS, we
phobic residue is exposed to the solvent. In brief, the solvacalculate the designability for all the'Zequences, whei
tion model is a two-letter codes lattice model where the hyiS the number of monomers, by the exact computer-
drophobic force to form a core is dominant and theenumeration method over the full conformational space. To
interactions do not directly reflect the bipartiteness. get correct data we exclude overcounting coming from re-
dundant structures that are mutually related by rotation, re-
flection, and reverse labeling.

On the basis of data obtained by the solvation model and
the HP model, we examine what determines the designability
In the solvation model based on RES] a protein is rep-  from three points of view(1) the effect of the search-space
resented by a self-avoiding chain of beads with two tyides restriction, namely, the search within maximally compact

and P, placed on a lattice. A sequence is specified by astructures(in this paper, we just used maximally compact
choice of monomer types at each position on the chain.  structures as the simplest example of the search-space re-
We used two-dimensional lattice models because a constriction, and we may consider other ones, e.g., structures
putable length by numerical enumeration of the full confor-with the biggest core (2) the effect of the lattice structure,
mational space is limitedsquare lattice, 18; triangular and namely, whether the lattice is bipartite or n@r, equiva-
cubic lattices, 1B Even with this chain-length limitation, we lently, the even-odd problemand(3) the effect of the num-
can make a “hydrophobic core” in two dimensions, in con- ber of monomergor, the length of the chajn
trast with the three-dimensional case.
A structure is.specified b_y a set of coordinates for all the RESULTS AND DISCUSSION
monomers and is mapped into the number of contacts with
the solvent. In our model, the total energy is given in terms Let us now give results of calculations.
of the monomer-solvent interactions, and depends only on (i) The effect of the search within maximally compact
the number of contacts with the solvent: structures In Fig. 1, we show the designability calculated on

MODELS
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s F TABLE Il. S, andD,, on the triangular lattice foN=13. The
parentheses correspond to energy parameters,, Enp, and
Epp). The data in the HP model with the energy parameters being
8 Enun=—1 andEyp=Epp=0 was obtained by Irlik and Sandelin
B2 2F ] [5]. S, andD,, are defined in the text.
=}
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Designability (i) The effect of the lattice structure: bipartite or nonbi-

tpartite. In two previous studies using the HP modél5],
interactions of the system directly reflected whether the lat-
tice is bipartite or not. Moreover, the designability on the
triangular lattice was calculated with the energy parameters
in Eq. (1) beingEyy=—1 andE,p=Epp=0, which would
cause accidental degeneracies. In their results, highly design-
the square lattice fdX= 16, using maximally compact struc- aple structures were not found for the triangular lattice. Also,
tures. For comparison, in Fig. 2 we show the designability ofit seemed that native structures are likely to contain the hy-
the same system without the search-space restri¢tien  drophobic core where a group of hydrophobic monomers
search over all possible structurem both cases, there are contact with each other; such contact can be made only if the
some highly designable structures. However, these structurelistance between the monomers along the sequence is odd.
are not common to both cases. In Fig. 2, the number ofrherefore, the bipartiteness has been thought to be a main
sequences that have native structures is 8277, but the numisgurce of the designability4,5,24. If so, highly designable

of sequences that have maximally compact structures as natructures do not actually exist, i.e., the conceptiesign-

tive is only 1087 out of 8277. That is, most sequences thadbility itself could be meaningless. On the other hand, if such
have native structures have nonmaximally compact strucPreferred structures should exist on the basis of the proposal
tures as native. The importance of nonmaximally compacky Chothia[3], the use of the lattice model would be inad-
structures has also been pointed out for the HP m@ap—  €dquate. Then, we used the solvation model, which does not
23]. These facts imply that it is not good to calculate thedirectly reflect the bipartiteness, and calculated the de-
designability over only maximally compact structures. Suchsignability on the square and triangular lattices. Besides, we
calculation picking up a “native” structure out of maximally falso calculated the dQS|gnab|I|ty on the triangular lattice us-
compact structures is not correct if the true native structure if?d the HP model, with the energy parameters befifig,
nonmaximally compact. Further, when the lowest-energy= —2:3, Enp=—1.0, andEpp=0.0.

nonmaximally compact structure and the lowest-energy N Table Il, we show the total number of sequences that
maximally compact structure are degenerate, there is no n&ave nondegenerate ground staf)(and the highest de-
tive structure(native structure must be nondegenerabeit ~ Signabilities Oy,) on the triangular lattice foN=13, ob-

the restricted-search-space calculation gives a false resdftined by using different interactions. This result shows that,
that there is a nativéand maximally compagstructure. We €ven if we take different values of energy parameters, or
should say that the designability calculated over only maxi€ven if we use the solvation model, the triangular lattice is

mally compact structures may be erroneous. still unfavorable for the designability althoug8, varies
largely. On the other hand, for the square lattice, highly de-

signable structures are found in the solvation model as well

FIG. 1. The designability calculated over maximally compac
structures on the square lattice fr=16. The vertical axis indi-
cates the number of structures of the same designability.

-]
100 -
TABLE Ill. The designability calculated over all possible struc-
@ gl tures on the square lattice fr=10. The right column indicates the
£ number of structures of the same designability.
B
=
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FIG. 2. The designability calculated over all possible structures 12 1

on the square lattice fdi=16.
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TABLE IV. The designability calculated over all possible struc-  TABLE V. The designability calculated over all possible struc-

tures on the square lattice for=11. tures on the triangular lattice fod=13.
Designability Number of structures Designability Number of structures
1 5 1 7
2 11
3 4
4 1 the biggest core. As the length of a chain becomes long, the
5 3 number of all possible structures increases almost exponen-
8 1 tially as uN (2< u <3 for the square lattice anddu <5 for
10 1 the triangular lattice [25]. On the triangular lattice foN
13 1 =13, the number of all possible structures is 6279601 and
18 1 the number of structures with the biggest core is 4110 out of
29 1 them. On the other hand, on the square Ia;ticd\fe:rlo and
36 1 11, the number of all poss@le structures is 2034, 5513 and
43 1 the number of structures with the biggest core is 23 and 5,

respectively. Thus the number of all possible structures and
the number of structures with the biggest core on the trian-
as in the HP mode(Fig. 2). These results imply that the gular lattice are much larger than those on the square lattice
absence of the highly designable structures for the trianguld26]. In consequence, the degeneracy tends to grow, which is
lattice should not be ascribed to the even-odd problem  unfavorable for designability. In this view, designable struc-
the nonbipartitenegsbut to other reasons. The propertiestures on the triangular lattice would be more difficult to ap-
that highly designable structures are found on the square lapear than on the square lattice.

tice and no such structures are found on the triangular lattice
might be general in two-letter codes lattice models where the
hydrophobic force is dominant.

(iii) The effect of the number of monomeérken, why are We have calculated the designability using the solvation
the highly designable structures absent for the triangular latnodel and the HP model on the square and the triangular
tice? The smallness of the number of monom@nsother lattices to deduce what determines the designability of pro-
words, the length of a chain is too shomay be a possible tein structures. The solvation model introduced in this paper
reason. An important object in the protein structure is thesatisfies two conditiong:1) the hydrophobic force is domi-
hydrophobic core, which consists of buried monomers havnant and2) the model does not directly reflect the bipartite-
ing no contact with the solvent. Recall that the limit of a ness. We have examined what determines the designability
computable length by exact enumeration of the full confor-from three points of view: effect of restricted search within
mational space on the triangular lattice is 13. The biggesmaximally compact structures, the bipartite/nonbipartite ef-
core, which we can make by using this limited length, is thefect, and the length of the chain.
one that consists of only three monomers; the length is too In conclusion, we have found that it is inadequate to cal-
short for the hydrophobic force to form a core. This culate the designability within maximally compact struc-
monomer-number effect is also found on the square latticetures. Our results imply that the reason why no highly de-
Consider the following conditions: at least ten sequencesignable structures on the triangular lattice have been found
have a given structure as their native state, and at the san®not the nonbipartiteness. We suppose that the main factor,
time, there are at least five such structures. Only if thesevhich affects the designability, is the chain length because
conditions are satisfied, let us say that “there are highly defor sufficiently large hydrophobic core to form, long enough
signable structures.” Then, &=10 or less, there are no chains are required. A triangular lattice is more unfavorable
highly designable structures even for the square latticéor the designability than a square lattice irrespective of
(Tables Il and 1. This result implies that when we discuss models or energy parameters, probably because the number
whether there are highly designable structures or not, wef all possible structures is large. However, if we can deal
need a long enough chain to make a core of enough sizevith a longer chain than in the present study, it is possible
This further implies that in a three-dimensional case, we willthat we may find highly designable structures even on the
need a chain of longer length than that in a two-dimensionafriangular lattice. The calculations of the designability for
case to make a core. longer chains on the triangular lattice are highly desirable.

Let us see Tables Ill, IV, and V. In Table V we show the These conclusions would apply to a wide variety of two-
designability calculated on the triangular lattice fé=13. letter codes lattice models, where the hydrophobic force is
On the square lattice fdd= 10, the biggest core consists of dominant, regardless of energy parameters and further details
two monomers. Both on the triangular lattice fée=13 and  of the model.
on the square lattice fdd=11, the biggest core consists of = Though a concept of designability is currently defined for
three monomers. We see that the triangular lattice is unfaa two-letter codes lattice model, our final goal is to examine
vorable for designability compared with the square lattice whether natural proteins have highly designable structures.
even when the biggest possible core size is the same or Eherefore, it is an interesting problem to extend the study of
little larger. A possible reason would be the number of allthe designability for a 20-letter codes mod2r] (e.g., the
possible structures, particularly the number of structures wittMiyazawa-Jernigan model[15] and Kolinski-Godzik-

SUMMARY
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Skolnick model[28]) and an off-lattice model. Substituting ACKNOWLEDGMENTS
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