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Origin of the designability of protein structures
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We examined what determines the designability of two-letter codes~H and P! lattice proteins from three
points of view. First, whether the native structure is searched within all possible structures or within maximally
compact structures. Second, whether the structure of the used lattice is bipartite or not. Third, the effect of the
length of the chain, namely, the number of monomers on the chain. We found that the bipartiteness of the
lattice structure is not a main factor that determines the designability. Our results suggest that highly designable
structures will be found when the length of the chain is sufficiently long to make the hydrophobic core
consisting of a large enough number of monomers.@S1063-651X~99!18810-X#

PACS number~s!: 87.15.By, 87.10.1e, 02.70.Lq
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INTRODUCTION

Natural proteins fold into unique compact structures
spite of the huge number of possible conformations@1#. For
most single domain proteins, each of these native struct
corresponds to the global minimum of the free energy@2#.

It has been proposed phenomenologically that the num
of possible structures of natural proteins is only about 10
@3#, which suggests that many sequences can fold into
preferred structure. There have been theoretical studies
the existence of such preferred structures@4–8#.

In many theoretical studies for the protein folding, a si
plified model called the hydrophobic polar~HP! model
@4,5,7–12# is adopted. The HP model is one of two-lett
codes lattice models where a protein is represented by a
avoiding chain of beads placed on a lattice with two types
beads, hydrophobic~H! and polar~P!. In the HP model, the
energy of a structure is given by the nearest-neighbor to
logical contact interactions as

H52(
i , j

Es is j
D~r i2r j !, ~1!

wherei and j are monomer indexes,$s i% are monomer types
~s5H or P!; D(r i2r j )51 if r i andr j are topological near-
est neighbors not along the sequence, andD(r i2r j )50 oth-
erwise.

Based on the HP model, a concept ofdesignabilityhas
recently been introduced@4#; the number of sequences th
have a given structure as their nondegenerate ground
~native state! is called thedesignability of this structure.
When many sequences have a common native structure
can say that the structure ishighly designable. Adding to the
importance in the protein design problem, the designab
also has evolutional significance because highly design
structures are found to be relatively stable against mutati

In the original study of Liet al. @4#, HP models on the
square and cubic lattices are employed, with the energy
rameters in Eq.~1! being EHH522.3, EHP521.0, and
EPP50.0. For each sequence, they calculated the ene
over all maximally compact structures and picked up
native structure. The results indicated that highly designa
structures actually exist on both lattices.
PRE 601063-651X/99/60~4!/4696~5!/$15.00
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Irbäck and Sandelin studied the HP models on the squ
and triangular lattices@5#. They adopted different energy pa
rameters from Liet al. @4#, namely, EHH521 and EHP
5EPP50. In the calculation of the designability they con
sidered all the possible structures not restricting themse
to the maximally compact ones. For the square lattice, t
confirmed the existence of the highly designable structu
as in Ref.@4#. For the triangular lattice, however, no suc
structures were found. In addition to the nearest-neigh
topological contact interactions, they considered local int
actions represented by the bend angle and calculated the
signability. Indeed the local interactions reduced degener
~i.e., the number of sequences which have nondegene
ground state increased! and made the designability highe
But they found that the designability on the square latt
was still much higher than that on the triangular lattice. Th
concluded that the difference in the designability for the
two lattices are related to the even-odd problem, that
whether the lattice structure is bipartite or not.

Quite recently, Liet al. proposed a model based on th
HP model on the square lattice@6#. In the model, the hydro-
phobic interaction is treated in such a way that the ene
decreases if the hydrophobic residue is buried in the c
They justify this treatment with two reasons:~1! the hydro-
phobic force that is dominant in folding@13,14# originates
from aversion of hydrophobic residues from water.~2! The
Miyazawa-Jernigan matrix@15# contains a dominant hydro
phobic interaction of the linear formEab5ha1hb @16#.
They took

H52(
i 51

N

sihi , ~2!

where$hi% represent a sequence (hi51 if the i th amino acid
is H-type, andhi50 if it is P-type!, and $si% represent a
structure (si50 if the i th amino acid is on the surface an
si51 if it is in the core!. They calculated the designabilit
over all maximally compact structures, whose result is c
sistent with their former study@4# ~see Table I!.

In our view, there are many points to be explored furth
for the designability problem. First, since the structures
natural proteins are compact but not necessarily ‘‘maxima
compact’’ in general, how can we justify the discussi
4696 © 1999 The American Physical Society
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TABLE I. The difference among three studies is shown. Each variable in the Hamiltonian is defined in the text.

Li et al. @4# Irbäck and Sandelin@5# Li et al. @6#

Lattice square and cubic square and triangular square
Interaction nearest-neighbor depend on the position of aH

Hamiltonian H52(
i,j

Esisj
D~ri2r j! H52(

i51

N

sihi

Energy parameter
(EHH ,EHP ,EPP)

(22.3,21.0, 0.0) (21, 0, 0)

Conformational space maximally compact all maximally compact
Highly designable
structures

found on both lattices found on square lattice but not found
on triangular one
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where only the maximally compact structures are taken
account? Second, is it adequate to consider only nea
neighbor interactions? Properties of a system with o
nearest-neighbor interactions are directly affected by the
tice structure, in particular, whether the lattice is bipartite
not. Is it good, only from these facts, to conclude imme
ately that the absence of the highly designable structure
the triangular lattice should be ascribed to the even-
problem associated with the triangular lattice@5#? One
should discuss the problem on the triangular lattice by us
a model like the one in Ref.@6# where the interactions do no
depend on the contact between monomers, hence,do not
directly reflect the nonbipartiteness.

Our aim of this paper is to examine the above points a
clarify what determines the designability of protein stru
tures. For that purpose, we introduce a model called
‘‘solvation model’’ and calculate the designability overall
possiblestructures on the square and the triangular lattic
Comparing the results with those of the HP model, we inv
tigate which properties of designability are less sensitive
choice of models and energy parameters. In the solva
model, a sequence consists of two-type amino acids~H and
P! and based on Ref.@6#, the energy increases if the hydro
phobic residue is exposed to the solvent. In brief, the so
tion model is a two-letter codes lattice model where the
drophobic force to form a core is dominant and t
interactions do not directly reflect the bipartiteness.

MODELS

In the solvation model based on Ref.@6# a protein is rep-
resented by a self-avoiding chain of beads with two typeH
and P, placed on a lattice. A sequence is specified by
choice of monomer types at each position on the chain.

We used two-dimensional lattice models because a c
putable length by numerical enumeration of the full conf
mational space is limited~square lattice, 18; triangular an
cubic lattices, 13!. Even with this chain-length limitation, we
can make a ‘‘hydrophobic core’’ in two dimensions, in co
trast with the three-dimensional case.

A structure is specified by a set of coordinates for all
monomers and is mapped into the number of contacts w
the solvent. In our model, the total energy is given in ter
of the monomer-solvent interactions, and depends only
the number of contacts with the solvent:
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H5(
i 51

N

Esi
hi , ~3!

where$hi% represent a sequence,hi51 if the i th monomer is
theH-type, andhi50 if it is P-type. The variablesi denotes
the number of contacts with the solvent, for example,si
5$0,1,2,3% on the square lattice andsi5$0,1,2,3,4,5% on the
triangular lattice. In other words,si50 means that thei th
monomer is buried away from the solvent. We takeE050,
E15&, E25A7, E35A13, E45A19, andE55A23. That
is, the possible minimum energy is zero. And these para
eters are selected so that the larger the number of con
with the solvent is, the more the degree of energy increas
the hydrophobic residue is energetically unfavorable to be
the corner@17,18#. Although the choice of these values
somewhat arbitrary, we have considered the followi
points: ~1! these values should not increase too rapidly w
the increase in the number of contacts with the solvent
~2! the way of choosing these values must not bring ab
nonessential accidental degeneracies~due to simple rational
ratios between the parameters! @19#.

Using the model on the square and triangular lattices,
calculate the designability for all the 2N sequences, whereN
is the number of monomers, by the exact comput
enumeration method over the full conformational space.
get correct data we exclude overcounting coming from
dundant structures that are mutually related by rotation,
flection, and reverse labeling.

On the basis of data obtained by the solvation model
the HP model, we examine what determines the designab
from three points of view:~1! the effect of the search-spac
restriction, namely, the search within maximally compa
structures~in this paper, we just used maximally compa
structures as the simplest example of the search-spac
striction, and we may consider other ones, e.g., structu
with the biggest core!, ~2! the effect of the lattice structure
namely, whether the lattice is bipartite or not~or, equiva-
lently, the even-odd problem!, and~3! the effect of the num-
ber of monomers~or, the length of the chain!.

RESULTS AND DISCUSSION

Let us now give results of calculations.
~i! The effect of the search within maximally compa

structures. In Fig. 1, we show the designability calculated o
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the square lattice forN516, using maximally compact struc
tures. For comparison, in Fig. 2 we show the designability
the same system without the search-space restriction~i.e.,
search over all possible structures!. In both cases, there ar
some highly designable structures. However, these struct
are not common to both cases. In Fig. 2, the number
sequences that have native structures is 8277, but the nu
of sequences that have maximally compact structures as
tive is only 1087 out of 8277. That is, most sequences
have native structures have nonmaximally compact st
tures as native. The importance of nonmaximally comp
structures has also been pointed out for the HP model@5,20–
23#. These facts imply that it is not good to calculate t
designability over only maximally compact structures. Su
calculation picking up a ‘‘native’’ structure out of maximall
compact structures is not correct if the true native structur
nonmaximally compact. Further, when the lowest-ene
nonmaximally compact structure and the lowest-ene
maximally compact structure are degenerate, there is no
tive structure~native structure must be nondegenerate!, but
the restricted-search-space calculation gives a false re
that there is a native~and maximally compact! structure. We
should say that the designability calculated over only ma
mally compact structures may be erroneous.

FIG. 1. The designability calculated over maximally compa
structures on the square lattice forN516. The vertical axis indi-
cates the number of structures of the same designability.

FIG. 2. The designability calculated over all possible structu
on the square lattice forN516.
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~ii ! The effect of the lattice structure: bipartite or nonb
partite. In two previous studies using the HP model@4,5#,
interactions of the system directly reflected whether the
tice is bipartite or not. Moreover, the designability on t
triangular lattice was calculated with the energy parame
in Eq. ~1! beingEHH521 andEHP5EPP50, which would
cause accidental degeneracies. In their results, highly des
able structures were not found for the triangular lattice. Al
it seemed that native structures are likely to contain the
drophobic core where a group of hydrophobic monom
contact with each other; such contact can be made only if
distance between the monomers along the sequence is
Therefore, the bipartiteness has been thought to be a m
source of the designability@4,5,24#. If so, highly designable
structures do not actually exist, i.e., the concept ofdesign-
ability itself could be meaningless. On the other hand, if su
preferred structures should exist on the basis of the prop
by Chothia@3#, the use of the lattice model would be ina
equate. Then, we used the solvation model, which does
directly reflect the bipartiteness, and calculated the
signability on the square and triangular lattices. Besides,
also calculated the designability on the triangular lattice
ing the HP model, with the energy parameters beingEHH
522.3, EHP521.0, andEPP50.0.

In Table II, we show the total number of sequences t
have nondegenerate ground state (Sn) and the highest de
signabilities (Dh) on the triangular lattice forN513, ob-
tained by using different interactions. This result shows th
even if we take different values of energy parameters,
even if we use the solvation model, the triangular lattice
still unfavorable for the designability althoughSn varies
largely. On the other hand, for the square lattice, highly
signable structures are found in the solvation model as w

t

s

TABLE II. Sn andDh on the triangular lattice forN513. The
parentheses correspond to energy parameters~EHH , EHP , and
EPP!. The data in the HP model with the energy parameters be
EHH521 andEHP5EPP50 was obtained by Irba¨ck and Sandelin
@5#. Sn andDh are defined in the text.

Sn Dh

HP model (21,0,0) 0 0
HP model (22.3,21.0, 0.0) 129 3
Solvation model 7 1

TABLE III. The designability calculated over all possible stru
tures on the square lattice forN510. The right column indicates the
number of structures of the same designability.

Designability Number of structures

1 1
2 2
3 4
4 3
5 4
6 1

10 2
12 1
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as in the HP model~Fig. 2!. These results imply that th
absence of the highly designable structures for the triang
lattice should not be ascribed to the even-odd problem~or,
the nonbipartiteness!, but to other reasons. The properti
that highly designable structures are found on the square
tice and no such structures are found on the triangular la
might be general in two-letter codes lattice models where
hydrophobic force is dominant.

~iii ! The effect of the number of monomers. Then, why are
the highly designable structures absent for the triangular
tice? The smallness of the number of monomers~in other
words, the length of a chain is too short! may be a possible
reason. An important object in the protein structure is
hydrophobic core, which consists of buried monomers h
ing no contact with the solvent. Recall that the limit of
computable length by exact enumeration of the full conf
mational space on the triangular lattice is 13. The bigg
core, which we can make by using this limited length, is
one that consists of only three monomers; the length is
short for the hydrophobic force to form a core. Th
monomer-number effect is also found on the square latt
Consider the following conditions: at least ten sequen
have a given structure as their native state, and at the s
time, there are at least five such structures. Only if th
conditions are satisfied, let us say that ‘‘there are highly
signable structures.’’ Then, atN510 or less, there are n
highly designable structures even for the square lat
~Tables III and IV!. This result implies that when we discus
whether there are highly designable structures or not,
need a long enough chain to make a core of enough s
This further implies that in a three-dimensional case, we w
need a chain of longer length than that in a two-dimensio
case to make a core.

Let us see Tables III, IV, and V. In Table V we show th
designability calculated on the triangular lattice forN513.
On the square lattice forN510, the biggest core consists o
two monomers. Both on the triangular lattice forN513 and
on the square lattice forN511, the biggest core consists o
three monomers. We see that the triangular lattice is u
vorable for designability compared with the square latti
even when the biggest possible core size is the same
little larger. A possible reason would be the number of
possible structures, particularly the number of structures w

TABLE IV. The designability calculated over all possible stru
tures on the square lattice forN511.

Designability Number of structures

1 5
2 11
3 4
4 1
5 3
8 1

10 1
13 1
18 1
29 1
36 1
43 1
ar
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the biggest core. As the length of a chain becomes long,
number of all possible structures increases almost expo
tially asmN ~2,m,3 for the square lattice and 4,m,5 for
the triangular lattice! @25#. On the triangular lattice forN
513, the number of all possible structures is 6 279 601 a
the number of structures with the biggest core is 4110 ou
them. On the other hand, on the square lattice forN510 and
11, the number of all possible structures is 2034, 5513
the number of structures with the biggest core is 23 and
respectively. Thus the number of all possible structures
the number of structures with the biggest core on the tri
gular lattice are much larger than those on the square la
@26#. In consequence, the degeneracy tends to grow, whic
unfavorable for designability. In this view, designable stru
tures on the triangular lattice would be more difficult to a
pear than on the square lattice.

SUMMARY

We have calculated the designability using the solvat
model and the HP model on the square and the triang
lattices to deduce what determines the designability of p
tein structures. The solvation model introduced in this pa
satisfies two conditions:~1! the hydrophobic force is domi
nant and~2! the model does not directly reflect the bipartit
ness. We have examined what determines the designab
from three points of view: effect of restricted search with
maximally compact structures, the bipartite/nonbipartite
fect, and the length of the chain.

In conclusion, we have found that it is inadequate to c
culate the designability within maximally compact stru
tures. Our results imply that the reason why no highly d
signable structures on the triangular lattice have been fo
is not the nonbipartiteness. We suppose that the main fa
which affects the designability, is the chain length beca
for sufficiently large hydrophobic core to form, long enoug
chains are required. A triangular lattice is more unfavora
for the designability than a square lattice irrespective
models or energy parameters, probably because the num
of all possible structures is large. However, if we can d
with a longer chain than in the present study, it is possi
that we may find highly designable structures even on
triangular lattice. The calculations of the designability f
longer chains on the triangular lattice are highly desirab
These conclusions would apply to a wide variety of tw
letter codes lattice models, where the hydrophobic force
dominant, regardless of energy parameters and further de
of the model.

Though a concept of designability is currently defined
a two-letter codes lattice model, our final goal is to exam
whether natural proteins have highly designable structu
Therefore, it is an interesting problem to extend the study
the designability for a 20-letter codes model@27# ~e.g., the
Miyazawa-Jernigan model@15# and Kolinski-Godzik-

TABLE V. The designability calculated over all possible stru
tures on the triangular lattice forN513.

Designability Number of structures

1 7
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Skolnick model@28#! and an off-lattice model. Substitutin
20-letter codes for two-letter codes certainly reduces deg
eracy, and most of all sequences come to have a structu
a nondegenerate ground state~i.e., native structure!.
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